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ABSTRACT allows the bifurcation to be approximately but accurately

Bifurcation theory is coupled with harmonic-balance

techniques into a powerful CAD tool for the design of stable

nonlinear microwave circuits and subsystems. Automatically

generated Hopf bifurcations loci provide detailed information

on the role of selected circuit parameters in the generation of
spurious tones, and are effectively used in support to ordinary

optimization to produce spurious-free circuit topologies.

INTRODUCTION

The design of nonlinear microwave circuits for steady-state

stability is an intriguing aspect of the general CAD problem for

which no systematic solutions are presently available in

commercial software. Two basic kinds of instabilities may be

encountered in microwave circuit operation: synchronous

instability related to the existence of positive real natural

frequencies of the steady state, and asynchronous instability

due to the appearance of pairs of complex conjugate natural
frequencies with positive real parts [1]. The former results in a

permanent deviation of the circuit electrical regime from the

predicted nominal steady state, the latter in the generation of
spurious tones. If the nonlinear analysis is carried out by the
Newton-iteration based harmonic-balance (HB) technique, the

onset of synchronous instability may be traced back to a sign
reversal of one real eigenvahre of the Jacobian matrix M of the

HB errors with respect to the state-variable harmonics [2], [3],

and thus of the Jacobian determinant. A specification on

synchronous stability can thus be introduced in a conventional

circuit optimization under the form of a suitable lower-bound

constraint on the magnitude of det [M ]. This concept was

successfully applied to the numerical design of oscillators for
electrical performance and synchronous stability in a recent

work [4]. When it comes to asynchronous instability, the
computational difficulties are much higher. A spurious

oscillation starts to build up when a (secondary) Hopf

bifurcation [1] is encountered on the solution path of the circuit

parametrized by an arbitrary control parameter [5], Existing

algorithms for the automatic detection of such bifurcations are
well suited for analysis purposes [6], [7], but are not fast

enough to be used inside an optimization loop. Also, it is very
difficult to express in the form of a minimization constraint the

requirement that no Hopf bifurcations exist on the solution path.
Thus the spurious-free design of nonlinear microwave circuits
is still an unsolved problem.

An interactive solution to this problem is developed for the
first time in the present paper. The concept of Hopf bifurcation
of a time-periodic regime is first reviewed making use of a
unified HB formulation encompassing both forced and
autonomous circuits. It is then shown that in the neighborhood
of a Hopf bifurcation, a modified form of the HB equations

located in a very efficient way, i.e;, by perforr%ing one Newto~
loop only. This technique provides the basis of a predictor-
corrector scheme that can efficiently generate Hopf bifurcations
loci in an arbitrary two-dimensional parameter space. In turn,
this enables the designer to locate regions of the space of
designable circuit parameters where spurious-free operation is
likely to take place. A conventiona~ optimization with the
variable ranges constrained to such regions then leads to a
spurious-free design. If necessary, the process can be iterated in
order to find the best tradeoff between the stability requirement
and the electrical specifications. The design of a stable varactor-
tuned broadband VCO is discussed for illustrative purposes.

HOPF BIFURCATIONS OF TIME-PERIODIC
STEADY STATES

Let us consider a nonlinear circuit (either forced or
autonomous) continuously depending on a free parameter u,
and operating in a time-periodic steady-state regime with a
fundamental angular frequency m. (carrier). In order to
establish the conditions for the startup of a spurious oscillation,
a perturbation analysis of the periodic steady state is carried
out. At frequency o the linear subnetwork is described by the
ordinary frequency-domain equations

Y((o) V(o)+ I(a))+ N(a))= O (1)

where V(a)), 1(01)are vectors of voltage and current harmonics
at the ports, and N((a) is an equivalent (Norton) representation
of the driving sources (including DC bias). Y(m) is the linear
subnetwork adtnittmce matrix. Let us assume that for u = uH an
oscillation of vanishingly small amplitude and fundamental
frequency (OH is superimposed on the steady state. The
electrical regime is then quasi-periodic with spectral lines at the
steady-state harmonics k(oo and at the sidebands kcoo + OH
(k integer). If AV, AI are vectors containing all the normalized
sideband harmonics, the perturbation equations of the linear
subnetwork can be written

YLAV+AI=O (2)

where YL is a block-diagonal matrix whose diagonal blocks are

given by Y(w) computed at the sidebands. Furthermore, in the

neighborhood of the steady state the nonlinear subnetwork can
be described by the frequency-conversion equations [8]

P_l AV=Q-l AI (3)

where P, Q are conversion matrices which can be computed by
the algorithm discussed in [8]. By combining (2) and (3) we
obtain the numerical condition for the existence of a Hopf
bifurcation at u = uH:

det [YL P + Q] ~ D(uH, (OH) = O (4)
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In the case of an autonomous circuit, the carrier frequency to. is
one of the unknowns of the harmonic-balance system, as
discussed below. However, it has been shown [5] that to first
order, the carrier frequency is unaffected by an asynchronous
perturbation. Thus the condition (4) is valid both for forced and
autonomous circuits, with the same definition of conversion
matrices.

Since D is a complex quantity, (4) is a nonlinear system of
two real equations in two unknowns, and in principle its
solutions can be found by any system-solving technique.
However, the circuit state depends on the parameter u, and in
turn the conversion matrices are state-dependent [8]. Thus each
iteration requires a numerical solution of the HB equations and
a new calculation of the conversion matrices. This procedure is
inherently slow, and usually implies severe convergence
problems. Better results can be obtained by a stepwise
technique based on the numerical construction of the periodic
solution path, and on a subsequent search based on Nyquist
analysis [6]. The full scan of a solution path by this method
typically takes a few hundred seconds on an HP 9000/750
workstation. This is still far too slow to be included in a circuit
optimization loop as apart of the objective evaluation process.

In order to overcome this difficulty, the following
approximate technique for the detection of Hopf bifurcations
has been devised. Let us assume that the spurious has built up
to some finite amplitude, so that the steady-state regime is
quasi-periodic, with lines at all the intermodtdation products of
two fundamentals @o, q, namely, kn)o + ho.)s (k, h integers).
Let E be the vector of real and imaginary parts of all HB errors,
and X the state vector containing the real and imaginary parts
of the state-variable (SV) harmonics. The HB equations of the
circuit may be written in the form

E(XH, XB, 015,U) = O (5)

where the state vector has been subdivided into two subvectors
XH, XB, containing components at the carrier harmonics (h = O)
and at the sidebands (h # O), respectively. If the circuit is
autonomous, the carrier frequency rso is one of the problem
unknowns. In this case the imaginary part of one of the
harmonic components at frequency COomust be kept fixed [9],
and is replaced by COoin the vector XH [9]. On the contrary, if
the circuit is forced by a sinusoidal source of frequency too, the
carrier is fixed, and XH contains the real and imaginary parts of
all the carrier harmonics. The effects of all driving sources (DC
bias and microwave if existing) are included in the nonlinear
operator E@). In this way the formulation of the system (5) is
equally valid for spurious analysis in forced circuits and in
oscillators. On the other hand. the circuit is alwavs autonomous
with respect to the spurious “oscillation. Thus & is always a
problem unknown, and the imaginary part of one of the SV
harmonics at frequency 05 is kept fixed (usually to zero), and
does not appear in the vector XB [9]. This harmonic will be
referred to as the “reference harmonic” in the following. The
reference harmonic is selected to belong to a state variable
directly affecting the spurious output power, such as the drain
voltage of the output stage for a FET oscillator or amplifier, and
the like. Its real part will be denoted by X~, while its imaginary
part is zero, as already mentioned.

In the state space, a quasi-periodic solution path bifurcates
from the periodic solution path at a Hopf bifurcation [1], [5].
When the circuit state approaches the Hopf bifurcation on the
quasi-periodic path, then SiITNtltatIeOUSIY u + uH, 03s + toH,
XR + O. It is thus obvious that an approximate evaluation of
uH, OH, or equivalently an approximate solution of (4), can be
obtained by searching for a quasi-periodic regime having near-
zero XR. The normal procedure followed in the construction of

the solution path is to assign the free parameter u, and to solve
then (5) for XH, XB, (as. In order to approximately locate the
Hopf bifurcation according to the preceding discussion, we
interchange the roles of X~ and u, and treat the former as a

known quantity, and the latter as a problem unknown. Thus XR
is fixed to a suitably small value, and (5) is solved by a Newton
iteration for XH, XB’, W5, u, where XB’ is the vector obtained
from XB after suppressing X . Note that XR cannot be set to
zero, since the Jacobian of (5~would then be singular because
of (4). Thus a suitable tradeoff must be sought between
accuracy and convergence. If XR is a drain voltage, it has been
found that letting XR = 10-4 V still ensures excellent conver-
gence, and allows UH, WH to be evaluated with a relative
accuracy typically better than 103. The approximate location of
a Hopf bifurcation by this technique takes a CPU time of the
order of a few seconds on an HP 9000/750.

AUTOMATIC CONSTRUCTION OF HOPF
BIFURCATIONS LOCI

The approximate technique discussed in the previous
section can only perform a local search for the Hopf
bifurcation, in the sense that the Newton iteration will only
converge if the starting point is close enough to the bifurcation.
As such, this method is not a substitute for global search
algorithms of the kind discussed in [6], which can locate all the
Hopf bifurcations of a parametrized circuit even if no starting-
point information is available. However, the local algorithm is
ideal for efficiently generating by continuation [10] Hopf
bifurcations loci in a multidimensional parameter space, starting
from any of the bifurcations located by the global algorithm.
This technique is discussed in detail below. A similar method is
obviously usable in the simpler case of (primary) Hopf
bifurcations of DC states.

Although in principle the number of free parameters is
arbitrary, we shall only consider two-dimensional parameter
spaces for ease of graphical display of the loci. Let the circuit
be parametrized by two independent parameters U1, U2.
According to the discussion of the previous section, XR is
always fixed to some suitably small value, so that W5 = OH, and
the equation of the locus can be written in the form

E(XH, XB’, (OH,tt~, tt~) = O (6)

where the indication of XR has been suppressed for simplicity.
At each point of the locus, one of the two parameters actually
plays the role of the independent variable, and is suitably
stepped in order to generate the next point. (6) is then solved
either for the set of unknowns Y1 = [XH, XB’, ~s, u 1] (if U2 acts
as the free parameter), or for Y2 = [XH, XB’, 0.)5, U2] (If the
reverse is true). The decision as to which parameter should be
stepped is taken on the basis of the derivative Dui/Duj, which
can be evaluated from (6) as

Dui
—. -
Du j

[)

R [J(Yi)ll ~ (7)

j Yi = const.

where the symbol D indicates that the derivative is taken along
the locus, and R is the row matrix [0 O 0 ... 1]. The Jacobian
matrix J(Yi) is defined by

(8)

In practice, Uj is chosen as the independent parameter if the
magnitude of (7) does not exceed a specified threshold. Other-
wise the roles of the two parameters are interchanged. In this
way the algorithm can automatically overcome any turning
point that may be encountered on the locus. Once the
independent parameter has been selected (say, uj), the next
point of the locus can be efficiently found by a simple



predictor-corrector scheme. In the predictor step, the increment
of Yi corresponding to an increment ~uj of the free parameter is
estimated by application to (6) of the implicit function theorem:

[)5Yi s - 8uj [J (Yi)]l ~ (9)

J Yi = const.

The corrector step is just the solution of (6) by a Newton
iteration starting from the point defined by (9). Note that the
predictor step is virtually costless (except at those points where
a parameter switching takes place), since the factorized
Jacobian is automatically available after performing the
corrector step for the previous point. The generation of a two-
dimensional locus by this technique typically takes a few
hundred seconds on an HP 9000/750.

APPLICATION TO BROADBAND VCO DESIGN
For illustrative purposes we consider the voltage-controlled

oscillator whose topology is schematicrdly illustrated in fig. 1.
This VCO has to be designed for tunability over a 1 GHz band
centered around 4.9 GHz as the varactor intrinsic bias voltage V
is swept between zero and the breakdown voltage VB = -25 V.
Performance specifications include a minimum output power of
15 mW, a phase noise at 10 kHz offset from the carrier lower
than -55 dBc/Hz, and a maximum deviation from linearity of
t 80 MHz across the band. The purpose of the reactance-
compensating network introduced on the gate (see fig. 1) is to
provide the frequency dependence of the feedback reactance
required for the linearization of the tuning characteristic. The
resistor R is added for out-of-band stabilization. As in many
broadband circuits, multiple resonances might occur owing to
the relative complexity of the circuit topology, leading to the
possible buildup of spurious oscillations. The detection and
elimination of such spurious tones is an important aspect of the
design problem. ‘

As a first stem the VCO is outimized for the performance
specifications a;d for synchron&rs stability by “the method
discussed in [4]. The optimization takes about 600 seconds on
an HP 9000/750 and meets all the specifications. The resulting
bifurcation diagram with the circuit parametrized by the
varactor bias voltage is shown in fig. 2. Two independent
periodic oscillation branches bounded by the primary Hopf
bifurcations HI, H2, H3, H4, are observed. H1PH2 is the nominal
solution path produced by the optimization, in the sense that the
specifications are imposed on the circuit states belonging to this
branch. H3QH4 is a spurious solution path autonomously
generated by the circuit. For a given tuning voltage, the output
powers at the two fundamentals, namely, pl, P2, are used as
quantities synthetically representative of the system state on
each periodic solution path. S1, S2 are (secondary) Hopf
bifurcations of the periodic solution paths. In the state space S1,
S2 are connected by a quasi-periodic branch which is not shown
in fig. 2 for the sake of clarity [51. Q, P in fig. ‘2are defined as
the points of the spurious and nominal periodic branches,
respectively, associated with the same voltage values (namely,
VI, V2) as the Hopf bifurcations S1,S2,

The resulting global stability pattern of the VCO may be
described as follows [5]. The periodic branch HIPS1 is stable.
The branch S1H z of the nominal solution path is asyn-
chronously unstable because of two complex conjugate natural
frequencies with positive real parts. The stability pattern on the
spurious solution branch is similar in the forward voltage sense.
The periodic branch H4Q S z is stable, and becomes
asynchronously unstable between S2 and H3. The turning point
T1 introduces a positive real natural frequency, so that the
branch T1H3 of the spurious solution path is synchronously
unstable as well. All the remaining periodic states are
synchronously stable. The quasi-periodic solution path

bifurcating from S1 and S2 is completely unstable, so that its
interest is marginal for the sake of the present discussion. Thus
the VCO exhibits jumps (from one periodic branch to the other)
when it is tuned past S1 on the nominal branch or past S on the
spurious one. This originates a hysteresis cycle PS1Q?2. Note
that these jumps are profoundly different in nature from those
discussed by Kurokawa [11], which are simply due to the
occurrence of synchronous instabilities on the nominal periodic
solution path. What is more important, the VCO is bistable in
the voltage range VI S V < V2 (i.e., the shaded region in fig. 2).
This means that if the drain bias is turned on with the varactor
biased within this range, either the nominal or the spurious
oscillation will build up with equal probability, depending on
the noise waveforms that actually excite the oscillation startup.

The VCO behavior as described above is obviously not
acceptable, and a further design step must be carried out in
order to suppress any kind of asynchronous instability. For this
purpose, a number of two-dimensional Hopf bifurcations loci
were built in order to visualize the dependence of the spurious
generation mechanism on selected circuit parameters. The most
interesting result is given in fig. 3. In this figure one of the
parameters is the varactor bias voltage, which implicitly carries
the information on the VCO tuning range, and the other one is
the resistance R shown in fig. 1. The figure simultaneously
shows the loci of the four primary Hopf bifurcations H ~, H2,
H3, H4, and of the two secondary Hopf bifurcations S1, S2. The
generation of fig. 3 takes about 1400 seconds on an HP
9000/750. Fig. 3 provides some interesting design information.
Both the secondary Hopf bifurcations and the spurious periodic
branch are seen to disappear at all when R exceeds a threshold
value RT = 134 CL The value R.= 50 Cl selected by the initial
optimization falls well within the region where spurious
generation takes place. Of course, simply setting R to a value
larger than RT would considerably degrade the remaining
aspects of the circuit performance. We thus carry out a second
design step consisting of a new optimization starting from the
final point of the previous one, but with the added constraint
R > RT. The final optimization takes about 40 seconds on an
HP 9000/750 and once again meets all the specifications. The
resulting bifurcation diagram given in fig. 4 describes a very
well-behaved tunable oscillator, completely free of instability
phenomena of any kind.

CONCLUSION
The paper has shown that existing HB-based CAD methods

for the numerical design of broadband nonlinear subsystems,
can be extended to include the requirement that the circuit be
spurious-free. The proposed approach is an interactive
technique based on the alternate use of state-of-the-art
optimization and numerically generated Hopf bifurcations loci.
The latter are shown to represent a very powerful engineering
tool, providing a synthetic overview of the influence of selected
parameters on the entire circuit bifurcation pattern. This allows
the spurious generation process to be understood by the circuit
designer, and to be prevented by intelligent interventions that
would be fatally beyond the reach of any conventional
optimization method. For typical microwave subsystems the
generation of two-parameter Hopf bifurcations loci is fast
enough to be compatible with the requirements of workstation-
based CAD.
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